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SIGNIFICANCE AND EXPLANATION

This paper develops optimal policies for harvesting biological

populations. The age structure of the population is taken into account. The

policies generally involve harvesting at maximal effort, not harvesting, and

harvesting to keep the growth rate of the population a maximum.

»VAccnrsion For
NT!IS  GRA&T

| KRR

Urne vonaeg {5
Juntification

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.




ON OPTIMAL HARVESTING WITH AN APPLICATION TO
AGE-STRUCTURED POPULATIONS

Morton E. Gurtin* and Lea F. Murphy"
1. Introduction.
In this paper we develop optimal-harvesting policies for a population whose evolution
is governed by a single autonomous nonlinear differential equation.1 We present a

2 and,

formulation of the infinite~horizon problem which does not involve a discount rate
using straightforward arguments, are able to establish the following results:

(a) If the effort is unconstrained, the optimal policy is to reach a certain value
P, of total population as quickly as possible, and then to hold the population at that
value for all subsequent time. As one would expect, P, is the population size that
maximizes the growth rate and hence corresponds to the maximum sustainable yield.

(b) This policy is also optimal when the effort is constrained to be less than a
constant E, as long as E is sufficiently large. For E small, however, it may not be
possible to hold the population P(t) constant at P,. In this case, the optimal policy
involves a "bang-bang" effort function and the total population approaches a limit larger
than P,.

We prove these results directly, without the aid of classical control theory. Indeed,
the classical theory is not well suited to this problem, since we Adeal, in part, with
unbounded controls, and since our formulation of the infinite horizon problem is

nonstandard.

NDepartment of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213,
.
Department of Mathematics, Oregon State University, Corvallis, OR 97331,
1
This problem has been given considerahle attentior in the literature (cf., e.qg., Clark and
Munro [11, Clark (2], Spence and Starrett [(3]). Our results (b) for Py and € small
appear to bhe new.
2
We use the nvertaking criterion of optimality,.

Sponsnred by the !lnited States Army under Contract No. DAAG29-80-C-0041 and by the National
Science Foundatinn under Grant No. MCS78-01935,
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We use our results to discuss optimal policies for age-structured populations
harvested with effort independent of age. Using a simplified form, Aue to Coleman and
Simmes [4]1, of a general nonlinear model introduced by Gurtin and MacCamy (5), we are able
to show that for a population whose age distribution is initially persistent1 - an
assumption justified for a population which has been evolving over a long period of time -

the optimal-harvesting problem reduces to the problem discussed above.

2. Age-independent theory.

a. The optimal-harvesting problem.

We consider a species whose total population P(t), when not harvested, is governed
by a differential equation of the form
B = y(P)
We assume that the growth rate vy
v

is a c!

function on [0,=)
with a

strict global maximum

P> 0.
at M

We assume further that, on (O'PM)’
y 1is strictly-positive2 and has
a finite number of critical

Fiture 1. The growth rate vy.
points.

1

Wwe use the term “"persistent age distribution” for what in the literature is usually
referred to as a "stable age distribution.” 1In a future paper [6] we will investigate the
conseaunnces of arbitrary initial conditions.

This assumption can be weakened to include "critical depensation.” Indeed, we need only
ragume that, when Pq < Py, vy >0 on (Pn,PM).




Suppose that at t = 0 the populatior has initial-value
P{0) =Py >0 , (2)
and that subsequently individuals are harvested at a rate
E(t)P(t)
with E a nonnegative function representing the (harvesting) effort. Then
B =y(P) ~EP , (3)

and using this equation and (2) the yield
f3 Btep(tIat
on a time interval [0,T) can be written as a functional of P:

Y {(P) =P

- T
. o = RP(TT) + fo y(P(t))at . (4)

Let us agree to use the term path for a strictly-positive, pilecewise continuous,
right-continuous,1 niecewise c1 function P on [0,®). Assume that we are given a

*
family A of paths. Then an optimal path relative to A is a path P € A with the

*
followi~q property: given any P e A, P# P ,
»
Yo (P ) > Yo (P) (5)
for all sufficiently large T (that is, for all T 1larger than some T1 = T1(P)). Note
that, since (5) is strict, there is at most one optimal path.

2 por

There are many possible objective (profit) functions with which one can work.
converience, we have chose to ontimize the total vield, Our analysis goes through, almost

without change, when a cost term proportional to

1

T.e., Pit) = P(t+). This assumption removesg ambiguity at points of discontinuity.
]

A thorugh Aiscussinn of ohjective functions appropriate to harvesting probhlems is given by
Clark 121,

-3~




T
[o Bttrat

is subtracted from (4}.
Remark. ihe infinte-horizon problem is usually formulated with the aid of a discount
factor e“"t (x > 0); one then maximizes the total yield

f5 BttIpcere ™ Car .

This formulation renders the yield in the immediate future more important than that of the
distant future. To the contrary, our procedure models situations in which one is willing
to accept a sub-optimal yield initially, in order to eventually produce the best yield
possible. The use of a discount factor may be sound from an economic point of view, but
our policy is certainly more appropriate to a long range conservation program. It is
interesting to note that discounting generally leads to a smaller size for the ultimate

population.

b, Optimal harvesting when the effort is allowed to be unbounded.

our first step will be to define the class A of paths. To begin with, we require
that the effort be nonnegative; in view of (3), this is insured by the constraint:

(A1) for any t > 0 at which P 1isg differentiable,

B(t) < y(P(t)) .

Next, note that YT(P) is well defined for all paths P, even those that suffer jump
discontinuities. 1If individuals are harvested, rather than stocked, the population after
such a jump must be less than the population before. We therefore add the second
constraint:

(AZ) P(0) < PO, and for any t > 0 at which P jumps,

P(t) < P(t) .
To interpret the differential equation (3) on paths with jump discontinuities, we

rewrite it in the form




. 1
(&n P) = P y(P) - E .

For this equation to make sense for functions with jumps, E must be interpreted as a

distribution. Indeed, if tk (k = 1,2,...,n) denote the times of discontinuity of P,

then

P P(t.)

k
(07 + f 6(t-tk)ln

E(t) = Eo(t) + §(t)en ETE;T

with E, piecewise continuous and § the delta distribution. Note that, with E defined

in this manner, (Az) follows from the requirement E > 0.
Since y has a strict maximum at P

reaching P,

M we would expect the optimal policy to involve

M as quickly as possible and then remaining there for all subsequent time. For

Po > PM this is easily accomplished by jumping immediately to PM, since such a jump is

consistent with the constraint (A,). For Py < P a jump from Py to P

M

m 1S not

possible; as we shall see, here the optimal way to reach PM is to refrain from

harvesting. With this in mind we introduce the following definition: the free-growth

curve starting at Z0 ] (O,PM) at time to » 0 1is the solution 2Z(t), t

initial-value problem

Note that, since y > 0 on (O,PM], 2 1is strictly-increasing and reaches
time.

Theorem.1 Relative to

A = {paths consistent with (A) and (Az))

the optimal path is given by

3
cf., e.q., Mlark and Munro [1], Clark [2}, Chapter 2.

b to, of the

Py in finite

. .,...u...»u-—"a‘




for PO > PM' and by

P () = (7

for P, < Py. Here Z 1is the free-growth curve starting at PO at time t = 0, while

ty 1is the time at which 2 reaches Py
N By (3), the effort E required
p
¢ to hold P(t) constant at Py is
Y given by
¥ -
) E y(PM)/PM.
)13 >
M Thus for the path (6),
Ve free growth PD
= + —
E(t) Y(PM)/PM §(t) &n 5
M
[
while for (7),
t 0, 0 <t <t
v R N li E(t) =
CLgule O ouaimal policies P P £ <t < o
v M)/ M tu
cur wrooaf of the theorem begins with
Assertinn 1. Let P € A be optimal. Then:
i) IS ~P\4 for all t > 0;
(iiy Pty P, fror all sufficiently large t.
Proof,  Assume that (i) is not true, so that P > PM on some set J < [0,®), Define

e vy Giey - min[PM,P(t)}. Then, since G < P, it follows from (1) that

(%) = v (P) = [ty - yiR(ENIAt + B(T ) = G(T ) > 0O
fo,71J




whenever T > inf J, which contradicts our hypothesis that P be optimal. This proves (i).
Before beginning the proof of (ii) note that, by (1) there exists an L € (O,PM) such
that
Py <P, P, € [L,PM] = y(P,) < y(Pz) . (8)
Our first step in establishing (ii) will be to show that
lim P(t) = p . (9)
M
¢+
Assume, to the contrary, that (9) is not true. Then, by (i),
lim inf P(t) < P B
M
tax
and there exists a K € (L,PM) and an increasing sequence (tn} with tn + » and
P(tn) < K
for all n. Let 2 denote the free-growth curve starting at K at t = 0, let «x denote

the time at which Z reaches P and let

Ml
Zn(t) = Z(t-tn) ’
n

so that Z is the free-growth curve starting at K at time the

Further assume, without loss in generality

Py I that ¢ ., > t + « for all n. (If
- ' 1 - .
“n ;///1 | -~ {t } does not have this property, some
n
] //f/
’//’///I P subsequence does.) Since
K | ‘
- | //// 1
‘ I P(t ) €2 (t ) ,
i n n n
|
1
t . 3
t =
tn+« tn+l Zn y(Zn), P < y(P) ,
and since the jumps in P are downward,
Figure 3. Bounding P by 2

n’ .
we may conclude from a well known comparison

theorem1 for differential inequalities that

1
cf., e.q., Hartman (7], Thm. 4.1, p. 26.
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P <z on [t ,t +x] . (10)
n n'"n

Thus, for P' defined by (6) or (7) and t sufficiently large,

t R t
1

ft“+‘ [y(P (£)) - y(P(t))]dt = ft“*

n n

[y(PM) - y(P(t)))ét

t +x

>[N ey - viz (ennae = (¥

. 0 [y(PM) -y(z(t)))dt =D > 0 ,

where we have used (8); hence
T *
F(T) = JO Iy(P (£)) - y(P(£))]Gt » 4= as T + = .
Thus, since P » 0,
* -
YT(P y - YT(P) = F(T) + P(T ) - Py **2 as T » =

which again contradicts the assumed optimality of P. Thus P satisfies (9).

Next, by (8) and (i), there exists a time a for which

p P(t) € [L,PM] for all t > a.
* 2 i [//////S/”//> et Z be the free-grnwth curve
. M : starting at Pla) at time ¢t = a,
L//////// : : let x denote *the :ime at which 2
1
E : reaches P,, and let & @A be
; L t defined by
Figure 4. Construction of G.
P(t), 00 ¢« t < a
Glt) = Z(t), a €+ < «
PM, x €t < »
Then
Yo (6) ~ Y (P = {: (y(G(t)) = y(P(t))}dt + P(T ) - Py (1)

for all T » «. Further, the arqument leading to (10) here tells us that

-8




P <Z on ([a,x] .
Suppose that (ii) is not satisfied. Then, by (8), (11), and the properties of G,

y(Glt)) > y(P(t)) for all t € [a,=») ,

the inequality being strict on an open set. Thus, since P(t) » PM as t *+ o, {7 must

be strictly positive for T sufficiently large. Since this cannot be so, (ii) must be
valid.

In view of Assertion 1, it suffices to establish optimality within the class

AM ={pe A| P« pM on {0,®), P(t) = Py

for all sufficiently large ¢t} .

* *
Assume that P, » PM' Let P be agiven by (6) and choose P € AM’ P# P . Then

pP(T) = P‘(T) = PM for all sufficiently largqe T, anrd for al) such T,

* _ _'T _ .
Ya(P ) = Y (P} = [ y(P,) - y(P{£))]dr > 0 ;

*
hence P is optimal.
To complete the proof we must establish the optimality of (7) when
PO < PM .
with this in mind, we introduce the following notation. Let [A,C] (D,D“], et Z

Aenote the free-aqrowth curve startinag at A at t = 0, let « denote the time at which

7 reaches C, and let [(a,~! [n,=) with

o et




c 2a+«x .

(12)

Further, let H be defined on fa,cl by

’ H (C oy (A
¢ o J—;, o E(ﬂl = v {’ Z({t-a), a < t <
T - 7 Hie) =

if y(C) > y(A);

A, a <t «
H(t) =

3.

>~
i H for v(C) < y(A)

Y

Ol e e e o - - =

o t Z{t-ctk), € - « €
Praure 5 Ovtimal transitions. if y(C) < y(A). Ve call
optimal transition1 from
during fa,cl; x 1is
the transition time of H, ¢ - a - x the rest time of H.
rise Jduring Ta,cl if
P{a) < P{t) < Plc) for all t e {(a,c) .
Assertion 2. Let P @ AM be a rige during fa,c] ¢ [0,o). Then:
i} There is an optimal transition H between P{a) and P{c)
(11)Y 1If the rest time of H vanishes, them P =H on l[a,c).

{1ii1)  If v  im monotone on  [P{a),P{c)], then

v(H(+)) > y(P(t)) for all ¢t e la,c] ,
with strict inequality on an open set if the rest time of H
Proot. we wi 11 atve the proaf only fFor
y(P{c)) > vip(a)) .

Slearly,

P(t) < Z(t=-a), a < t < a + «

SfFL, Spence and Starrety 3], o, 393,

10~

C, a+ ¢ <

during

(13)

the

to C

Finally, a path P eA, is a

(14)

fa,c).

is nonzero.

(1%)




(cf. (10)). Thus ¢ is consistent with (12) and the optimal transition (13) is well
defined. Assume (for the remainder of this paragraph) that the transition time «x of H

equals ¢ - a. Then H(t) = Z(t-a) for all ¢ € {a,c], and since

H(c) = P(c) ,

A o= y(H), P < y(p) ,

it follows1 that P » H on f{a,c]; this inequality and (15) yield P =H on [a,c]l.

To prove (iii) let y be monotone and hence strictly increasing on [P(a),P(c)]).

{The monotonicity is strict since y has at most a finite number of critical points in
(O,PM).) 1t is clear from (15) and (14) that P < H on [a,c], and if the rest time of
H is nonzero, that P(a+x) < H{a+x) = P(c). This vields the validity of (iii).

We are now in a position to egtablish the optimality within AM and hence A - of
the path P. defined by (7). Thus choose P € AM’ P ¥ P', and let TM be the leagt time
for which
P(t) = PM for all t > TM . (16)

Since all jumps in P are downward, P must take on all values in [PO,PM]. Let

C.|,(T?‘,-..,Cn with !1’0 = C1 < C2 Coesel Crl = PM

n M -
. ; ﬂ\/\&, J
? NS o
1
ﬂ ' I '
Cob e : ] |
< Rl \\//' i T :
' 4
N p o ; 4
1 i I
| : !
‘/ 1 L " i .' L t
1 12 b oo
Fiaure 6. Decomposition of P.
t
rf., o.1., Hartman (71, Remark 1, p. 26,

-1%=-




denote the extreme points of y in [PO,PM], let & (k= 1,2,...,n) denote the last

x
time in [D,TM] at which P takes on the value Ck (note that ln = TM), let Tk
(k = 2,3,...,n) denote the first time after 2k-1 at which P has the value Cyr and
define T’ = 0. Then
P is a rise during lzk’Tk+1] (k = 1,2,00s,n=1) (17)

Consider the path R e AM obtained from P by replacing each rise (17) by the
corresponding optimal transition. Then, since y is monotone on each [P(lk), P(1k+1)]'
we may conclude from Assertion 2 that

v(R(t)) > y(pP(t)) for all t >0 .
(Note that P and R coincide on each [Tk,lk]-) Thus
1 .
YT(R) > YT(P) for al T > TM (18)
We shall complete the proof by showing that
*
. 1
YT(P ) > YT(P) for all T > TM (19)

- -

R=P, R¥P .

For convenience, we consider separately the two cases:

*
Case 1 (R =P ). Here

T = Ek (k = 1,2,...,n) and the rest time -~

(20)
for each rise except the last - vanishes .
Thus, by (ii) of Assertion 2, R and P coincide outside of the last rise~interval
lln 1,Tn]- The rest time associated with this last rise cannot vanish, because if it did,
-
then R and P would coincide everywhere, an impossibility, since R =P # P.
Consequently, we may conclude from (iii) of Assertion 2 and (8) that

-
YT(P) < YT(R) (= YT(P )) for all T > TM .

case 2 (R#P'). Let T)>T, = L. By (7), the integral

*
f2 yee  (enae

-12=-




-
is equal to (T-T,)y(P,,) plus the integral of y(P ) over the free-growth segment of
M M

*
P . Since the free-growth equation is autonomous, this latter integral equals the inteqgral

of y(R) over the free-growth portions of R. Thus

¥ (PT) = Yy (R) = (T-T,)y(Ry) - In(R) (

21)

where IT(R) is the integral of y{R) over the set { consisting of the rest portions of

the optimal transitions that comprise R and the union of the intervals (11,11),

(12,£2),...,(1n,T). on Q, y(R) € y(PM) and (as we shall show at the end of the proof)

Q contains an open set ( with
y(R{(t)) < y(Py,) for all t e 0 . (
Thus, since the measure of Q is T - TM,
Ip(R) < (T-T)y(Py)
and (21) yields YT(P.) > YT(R). In view of (18), this inequality implies (19}.
To verify (22) note first that (20) cannot be satisfied, for if it were, then R
would equal P'. Thus at least one interval [Tk,lk] or at least one rest interval wi

R#P has nonzero duration. This interval clearly contains an open set ( on which

M
is satisfied. (If the interval in question is [rn,in], the existence of ( 1is insur

by the equality of R and P on [rn,zn] and the fact that TM = in is the smallest

time consistent with (16}}.

22)

th

(22)

ed

Remark 1. The construction R - obtained from P by replacing each rise (between

extrema of y) by its corresponding optimal transition - can be defined (in an obvious

manner) for any function P with domain an interval fa,hl, as lnna as P(a) < P(b)

P(t) < P(b) fnar all t @ (a,b). We will refer to this construction as the quasi-optimizer

nf P on fa,hl.
c. BRounded effort.
The problem becomes more complex when the effort is restricted by an upper bound
We require that E(t) < E for all t, or equivalently,
(A Blt) » y(P(t)) - EP(t) .
A path which nbeys (A1) and (Al) is necessarilv rontinuous. We therefore lismiss (\:\

restrict onr attention to paths consistent with (A'), (A]), and the initial conditicn (

-13-
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1 function on [0,») with a finite number of

In addition to assuming that y is a C
critical points, we assume
lim sup y(P} < 0 . {23)
P + »
Then there is a largest value PS(< w) for which
P) = EP_ .
v S) E s
Further, by (23), y restricted to [PS,w) has a maximum; we assume that this maximum
occurs at exactly one point PM e (Ps,m):
> .
y(PM) y{p) for all p > Ps' p # Py (24)
Finally, we assume ' that y >0 on (0,Pg). We use the notation
S = y(Pg), M = y(Py) (25)
then M > S.

In addition to free growth curves, the optimal path involves maximal-effort curves;

that is, solutions X(t), 0 < t < =, of the equation
X = y(x) - EX . (26)
We again appeal to a comparison theoremz to note that if P satisfies (A3) and P(to) =
X(to), then
P <X on [0,t0], P >x% on [to,w) . (27)

For P, < P

n M we will use the following notation:

U, = inf{p > P

1 | y(p) > M}

0

and for each value of nln = 1,2,...) for which the underlying set is nonempty,

<
W

inf{p > U, | y(p) < M} ,

c
|

= j > .
a1 inf {p vn | vip) > M}

Th 1
Then Y,‘n < Vn < Yn*“,

1Tt e may he weakened as indicated in Footnote 2, p. 2.

€., eoit., Hartman [7), Thm., 4,1 and Remark 1, p. 26.

-14-




>
y M on (Un’vn) ' (28)
and, by (24), Vn < PS, for all n. Since y has a finite number of extrema, it is clear

that there is a finite number N (say) of Un's and the same number of Vn's.

We consider two cases.

Case A. Py 1is not a local

I
| !
1

t \ . v(p) maximum of y. Then, by (24),
] ) e | '
i ) ! t

l i =
: l : Py = Pg, Yy < S on (Ps,ﬂ) ’ (29)

: |
| N

P and VN = Ps.
PO Ul Vl UN PS = VN

Figure 7. The function y for Case A.

Theorem A. Relative to

A = {paths consistent with (A)), (n;), and (2)}

the optimal path is P', as described below.

tay I1f P, < Pg, then
-
P (t) =

(30)

with

%y the_free-growth curve through P, at t =0,

Z the free-growth curve through Vv _, at t=wv

u the time at which Zn(un) = Uy,

X the maximal-effort curve through Un at t=u

v the time at which xn(vn) =V,

~15~




is the maximal-effort curve through P,

at t =0,

Figure 8.
Cage B. P

Theorem B.

The function y for Case B.
M is a local maximum for vy

Relative to

the optimal pat

A = {paths consistent with

(a) 1If P

Here Zn v Xn ’

through VN at t = vy

Un

We justify the v, by noting that,

for n < N, y(p) ~ Ep >0 on [Un,vn],

so that X, reaches Vn in a finite
time. The optimal paths are graphed in
Fiqure 9. Before proving the theorem for

Case A, we state the results for

(Figure 8).

(A)), (Ay), and ()}

*
h is P , as described below
0 < PM,
21(t), 0 <t <« u,
. x’(t), u, <t « v,
P (t) = .
ZN*1(t)' v €t < tM
PM' tM Ct <>
and v, are interpreted asg in Theorem A, ZN+1 is _the free-growth curve
and t, is the time at which Z,,,(ty) = Py.
0 ? PM > Ps,
X(t), 0 <t <
. (t) tM
P (t) =
PM, tM<t<°°,

(b) If P
where X
which x(tM) =
{e) 1If P

is the maximal-effort curve through Po at t =10, and t, 1is the time at

< w,)

is the maximal-effort curve through P,

Py. (Since X(w) = PS < PM' tM
*

n > PM and PS = PM, then P
-16-




* *
|* P
; Case A P Case B
. 0 \
Py maximal effort .
— - — free growth PM
14
Yn“Ps
4]
N
Vl ___________
U
R R e
P ’ /
of Py

Figure 9. Optimal paths.

We will prove the theorem only for Cagse A(a). Since the technical aspects of the
proof are rather complicated, we offer, as a preliminary, the following intuitive argument
in suppori of the optimality of the path (30).

We first ask, is there an optimal equilibrium value for the population? By (A3), any
equilibrium value p must satisfy v(p) < Ep. It is clear from Figqure 8 that the "best"
such value is p = PS' We therefore expect, ard will indeed show, that the optimal path
asymptotically approaches Pg.

We next ask, what is the hest way to make the population grow from its current size to
the optimal size PS? We know that the optimal asymptotic vield rate is S. Thus if the
current yield rate is less than S, we refrain from harvesting iu hasten the growth of the
population to a size which will produce a higher yield. On the other hand, when the
current yield rate is higher than S, we are in an unusually profitable situation.
Although the population will inevitably grow beyond this profitable staade, we can, bhv
harvesting with maximal effort, prolong the period of hiagh profit. The path " as

defined in (30) behaves in the manner just described.
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Remark 2. If y has a strict global maximum at PM > Ps, which will be the case if
E is sufficiently large, then it is possible to harvest so that P is held constant at

Py For this case Theorem B is completely analogous to ocur theorem for unbounded effort.

For P, < Py the optimal path is a free-growth curve followed by P(t)

m

PM; for Py > Py

the optimal path is a maximal-effort curve (which replaces the jump to P

M) followed by

TP .
P{t) .
We now begin our proof of Theorem A{a). Thus let
Po < Ps .
Assertion 3. lLet P € A be optimal. Then:

(i) lim P(t) = PS:

t 00
({ii) P is nondecreasing.
Proof. ©Note that P(t) < Ps, 0 <t < », since otherwise, the path Q € A defined by
Q(t) = min{P(t).Ps}
would be better. (For convenience, we use the terminology: Q is better than P |if

YT(Q) > Y. (P) for all sufficiently large T.) Assume first that P(to) e [Un,VN] at come

T
time t45. Let X be the maximal-effort curve through P(t,) at ty. By (26), X(t) + Pg
as t » «; thus, since X < P < PS on (to,w), (i) is satisfied. Assume next that
P(L) < Uy for all t. Let

Se = {p e [O,UN] | y{p) >s - e} . (31)
Then there exists an € > 0 such that

v(p) > Ep for all p es, . (32)

Moreover, since y has at most a finite number of critical points, Se is the union of a
finite aumber of compact intervals. By (28), (27), and (32), if P enters any such
interval, it remains only a finite time, and it never returns. Thus P(t) 1lies outside
Sg  for all sufficiently large t, angd (25)1 and (31) yield

y(Bg) - y(B(t)) > € (33)

for all such t. Taet
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Z(t), 0 <t <ts
Q(t) = {

P, tg St ¢,

where 2 is the free-~growth curve starting at Py at t = 0, while tg is the time at
which 2 reaches Pg. Then a trivial computation, based on (33), shows that
lim [YT(Q) - YT(P)I =+,
T
so that Q 1is better than P. This contradicts the optimality ot ¢ and the proof of (i)
is complete.
o+
{1i) We will show that P(t ) » 0 for all t. Assume, to the contrary, that
.+ -
P(t1) < 0 at some time ty, and let P1 - P(t,). Then by (A3), y(P,) < EP1, and,

since y!Ps) = EPS, Py <P In addition,

gt
q = sup{p € [0,P)) | y(p) = Ep}

= infp e (Pl | y(p) = Ep}
exist (recall y(0) > C), and

yip) < Ep for all p e (q,7) ,
(34)

< < < .
0 < q P1 T PS

(Cf. Pigure 10. The inequality 1 < PS is a consequence of (28) and (34),).

Let X be the maximal-effort curve starting at P, at t = t,. Since the maximal-
effort curve through q remains constant at q, X > q on [t’,@); hence (27) yields the
conclusion

P>q on [t1,m) . (35)

Let t, + ¢ be the first time after t, at which P(t1+1) = P,. (Since P, < Pgs

the existence of £ > 0 1is assured by (i).) Then
P < P1 on (t1,t1+2) . (36)
By (34),, (35), and (36), q < P(%) < 1 on (t‘,t1+l), so that, by (34),,

v(P(t)) < EP(t) ¢ Et = y(1) for all t & (byot40) .

Thus the path © @ A, pictured in Figure 11 and defined by
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Q(t), ()<t:<t1
+ < -
P(t+g), t1 <t tz £
) =

- < <

T, t2 L t t2

P(t), t2<t<m P

where t, (> t1+l) is the first time after t, at which p(tz) = 1, 1is better than

w

* +
Hence P(t1) < 0 1is not possible. This completes the proof of Assertion

T -
y(p) 0
P, 4 ”V\/'/ '
1]
t |
. CoeT
| _ ; |
i ! 4 ' : !
t
L ‘. L
1! -
P
q Py T t) t¥L oty
Figure 10 Figure 11

The following definition will be useful. Let f be a continuous, nondecreasing

function on [(0,»), and let F belong to the range of f. Then f stretched at
F by amount £ > 0 1is the function
t defined by
A "3
s
4 0
£ y £(t), <t <« to
’ ¢
4 =
F - o= (t) F, ty Sttt L
77 f(t-2), £ + L Ct <=
K;____T__ﬁ_n._ — —
tO to+l
Figure 12. f stretched at F.
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where t, 1is the first time at which f(to) = F. A typical stretched function is shown in
Figure 12. Of course, by successive applications of this definition we may stretch a
function at a finite number of points in its range,

We are now in a position to establish the optimality of the path P' defined by
(30). In view of Agsertion 3, it suffices to show that P' is better than any path
Pe A P # P., consistent with (i) and (ii) of Assertion 3. Let P be such a path, let

Gn(n = 1,2,...,N) denote the time at which P crosses U, and let Gn(n =1,2,.s.,N=1)

denote the time at which P crosses Ve (These times are unique; indeed, if ¢ denotes

any one of these times, then 5(t) » y{P(t)) - EP(t) > 0.) Let 5 be P stretched at

A A ; .
V1'V2""'VN-1 with An - (Vn'“n) the amont of the stretch at Vn. Here An is the time

it takes the maximal-effort curve starting at Un to reach Vn. Finally, let G;

(n=1,2,...,N) be the time at which 5 crosses Un, so that ;; = J; + Xn

{n=1,2,...,N-1) 4is the last time E takes on the value Vn. Then, since P # P‘,
PP (37)
in addition, a simple analysis shows that

>
lim [YT(P) - YT(P)] =0 .

T+

It therefore suffices to show that

* >
P is better than P . (38)

»>
Consider the path R obhtained from P as follows:

~ o~ > ~
(I) On [un,vn] replace P by the maximal-effort curve starting at Un at t = un.

(Note that 5 is defined so that this maximal-effort curve reaches Vn at G;.)

~ -~ *
(IT) On [vn_1,un] replace P by its quasi-optimizer {(cf. Remark 1)}. Here (I) and

(II) hold for n = 1,2,...,N with vy =0 .n} G& = ».) The paths P and R are shown

in Figure 13. Note that these paths generally do not belong to A.
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A
N S =
, P
s
ey
\ pad
A
N r' Y }/T -
| ? el
—-— -=R + .
v L e 74’_;
N /a"
i ST I
| o7
v %,‘_\A_ -
stretch Pl
V. ‘__ - 2 /
: ////’/ j
J&l imal-effdrt curve
P < maxima
4 1
T
! B ' K
D .
I ~qasi-optimizer ! l
. e } _ |
[l ~ N N ~ ~ ~
Uy vy u, v, uy
le—.xl - ¥
. >
Figure 13. The curves P and R.
Assertion 4.
>
lim inf (Y _(R) - ¥Y_(P)] > 0
T T
T » o
with strict inequality if R # B.
Pronf. Let T > G\I and define
N N
T = U IV__1,un?, J = Y !un,vn‘., Jp=4dn0 fo.t1
n=1 n=1
- (39)
ey = A [y(R(t)) - y{(P(t))ldat ,
so that (0,T] =1 UJT and
» L d
Y.0R) = Y (P) = P(T) = R(T) + T(T) + T(7 ) .
A} . -
) Ty ?’!v;\,) = Rfu ), (27} implies BiTY 3 R(T)+ Thus to prove Assertion 4 it suffices
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to show that (40) and (41) below are valid:

I (1) > 0 with strict inequality if R # B on I ; (40)

lim inf I(J3) » 0 with stricc inequality if R # B on J . (41)

T + »
Conclusion (40) is an immediate consequence of (ii) and (iil) of Assertion 2 and the

fact that R # P on I only if at least one of the optimal transitions associated with

R has a nonzero rest time.

We now prove (41). On an interval [G;,G;], R 1is a maximal effort curve. Because
> > P 4 > > ~ o~
P > y(P) - EP > 0 whenever Un <P« vn’ P must be strictly increasing on [un,vn]

until the time at which 3 reaches Ve Of course, if n = N, 5 may never reach Vs in

-
which case P 1is strictly increasing on [uN,m). Let Cy, U, =C, ¢ Cy €evek Cy = Vo

denote the extrema of y on [Un,Vn], 80 that K 1is odd, and

for kX even, y 1is strictly increasing on [Ck-1'ck] ’
(42)

strictly decreasing on [Ck,Ck+1]

Let ty be the time at which R(tk) = Ck‘ Further, let Q be the function obtained by

stretching 5 at each Ck for odd

.= |
Y = ,
I / B R k < X, and then restricting the result
/T— -
p 4 ~ o~
/ : to f{u ,v_]. The amounts of the stretches
C - e —_ n n
3 A ! e Q
/ o7 are uniquely determined by the requirement
C, | A —
“ =7 = =
c U , . Q(tk) R(tk)( Ck) for k even. It
1 n
t . N
tl tg t; tk is clear from this construction and (27)
Figure 14. The function Q. that, for k even,
c < C .
1 Q < R K K on [tk_1,tk], ck SR QK Ck+1 on [tk’tk+1]

These 1neaualities and 742) im~ .y that

y(R(t)) > v(Q(t)) on [Jn,J 1. (43)




The integral of Y(ﬁ) over the times at which P is strictly increasing is equal to the
analogous integral for y{(Q). Thus, since y(Ck) > y(CK),
v

[P tytete)) - yidtennae >0,

u
n

and we conclude from (43) that

v
{7 tyree - yBeniae >0, (44)

u
n

for n < N. Thus to show that 1lim inf I(JT) » 0 we have only to show that

lim inf [T (y@(e)) - y(Benide > 0 . (45)

T + o u
n

To verify (45) let lk (k odd) be the length of the stretch in Q at Ck and let L
denote the sum of the lk. Then the integral in (45) is equal to

T >
i [s - y(Bte))lae + I g ly(c) - s) .
T~L k
odd k
>
The integral tends to zero as T + », since P(t) »+ PS as t + », while the sum is
> 0, since y(Ck) ? S. Thus (45) holds.

The remainder of the proof of (41), that 1lim inf I(JT) >0 when R # ; on J, can
safely be omitted. This completes our proof of Assertion 4.

We now return to the proof of (38) and consider separately two cases.

Case 1 (R = P'). Here, by (37), R # 5, and (38) follows from Assertion 4 with

-
R=7P .

Case 2 (R # P'). Choose T > G& (> uN) and consider the integral

T *
T, = [y (v(P (£)) = v(R(IDAL .
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The integral of y(R) over the free-growth portions of R is equal to the analoaous
«
inteqral for P . Similarly, the integral of vy(R) over the maximal-effort segqments of

R on [0,5&] equals its counterrart for P on {0,u,]. Thus 10 = 12 -1y - 13, where

4

L ]
1= [T yweenar, 1= T yerenar

and 13 is the integral of y(R) over those subintervals of I (cf. (39)1) on which F

is constant. The measure of these sub-intervals is

L
Thus, since y(R{(t)}) < S on I, we have the bound
< -
73 S A
with

(1) A =0 when y(R(t)) =S on all of the above subintervals,
(2) A > 0 when vy(R(t}) < S on at least one such subinterval.

-
Finally, since R(t+1) = P (t) for t > u_,

N

- T v
Iy = 1y = [p_, vip (e)de .

In view of the above remarks,

* - - rrr *
YR(P ) = Y (R) > P (T-1) = P (T) + Jpe1 [y(p (t)) - sldt + A ,
*
and, since P (t) - PS'

*
lim inf (Y _(P )} ~- YT(R)] > A0 (46)
T + T




For A > 0 this result and Assertion 4 imply (38). Thus assume A = 0. Since R ¥ P’
there is at least one interval @ in I with R constant at 8, so y(R) - ER =
S-ER>0 on Q. Since P=PeA on I and R fails to satisfy (A3) on Q < I,
B #R on Q. Thus (38) follows from (46) and Assertion 4. This completes the proof.
4. Discounting.
The usual method of treating an infinite horizon problem is to introduce a discount

factor e-‘t into the yield. The total yield

I e E(tIP(Bat

is then defined for all bounded paths P and may be written as

vy = [0 e tulp(t))at + P,

where
w(P) = y{(P) - xP . (47)

The corresponding optimal harvesting problem for unconstrained effort consists in
maximizing Y over the class of all bounded paths which are consistent with (A1) and
(A2). If w 1is a C1 function on [(0,») with a strict global maximum at Py > 0 and if

w has no other extrema on (0,x) (48)
then the snlution of this problem is analogous to the solution of the nondiscounted problem
of section b. (cf., e.g., Clark and Munro [1]) and Clark (2], chapter 2.) We now show, by
example, that if the rather restrictive assumption (48) is eliminated, the optimal path

nerd not be a most rapid approach to PM'
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P
-52
PMe PM
Figure 15. The function w.

Let PO >0, x>0, and M > 0 be fixed. Further, let € > 0 be arbitrarily small,
let P, = P,(€) = Py/e, and let w =wg bea C' function on [0,=) with the following
properties: w has a strict global maximum at PM, w>0 on [PO,PM],

w(Py) = M, V(Po) =M - , (49)
and
2
M-@ on [pP,P & ]
[\ ]
w < . (50)
: o2 -2
{ €@ on [Poe R PMe ]
we will show that for € sufficiently small the path P = P0 is better than the path P’
defined in (7).
To see this let 2z = Ze be the free-growth curve starting from Po at t = 0, so
that, by (47),
7= wlz) + «Z . (51)
Let t, = t, (€) be the time at which 2 reaches P, (cf. (7)). Further, let tg = ty(e)
a? -e?
and  t, = t,(e) denote the times at which 2 reaches Poe and PMe , respectively,
so that ty €ty <ty Assume that € < «x. Then (51) yields
€7 <7 KM+ 7 on el . (52)
-27-
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2
Since M and « are independent of €, while PMe’e becomes infinite as € +» 0, we

may conclude from the second inequality in (52) that

ty @ as e »0 . (33)

et 2

Similarly, the first inequality in (52) yields Z(ty) > Pie ~, and, since 2(tg) = Pge®,
it “>llows that tO < €; thus

ty > 0 as € + 0 . (54)

In view of (50), w{(2{t)) 1is bounded above Ly M - @ for 0 < t < to, by e for

to <t < t1, and by M for t1 <t « tM; thus, using (7) and (49)2,

-xt Kt

t 0 1
L 4 A - - ] -

12"y - ¥(®) < f) (e-meTFae + [T eeTFar o 128Me * (u-3ele .

1

0 K

By (53) and (54) the right side of the above relation has the limit -M/x as € + 0,

Hence we have only to choose @ sufficiently small to insure Y(S) > Y(P.).

3. The age-dependent theory without harvesting.

a. Basic equations. Pergistent age distributions.

We work within the framework of the nonlinear theory developed in (5]. This theory is

based on the equations

pla,t) 39;:'” + ua,Plt))pla,e) =0

Ja

00
P(t) = Io pla,t)da , (55)

B(t) = p(0,t) = [ Bla,P(t))pla,t)da

where

cla,t) is the age distribution (the number of individuals, per unit aqe,

nf age a » 0 at time t > 0);

P(t) is the total population;

B{t) 1is the birth-rate;
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¢ is the death function (u(a,P)da is the probability of dying in

the age interval (a,a+da) when the population is P);

B is the birth function (f{(a,P) is the expected number of births
to a person of age a, per unit time, when the population is P).

Here, however, we assume that dependence on total population is confined to the death

function. More specifically, we asgume that !

g8(a,P) = B(a) ,
(56)

u(a,p) = un(a) + ue(P) .

In (56)2, un(a)da represents the probability of dying of natural causes during (a,a+da),

while ue(P)da is the probability of death due to environmental factors (crowding, etc.)

during the same interval. 1In view of this interpretation,

n{a) = exp{~ f: un(a)du}
is the probability of living to age a in a perfect environment; that is, an environment

with
(57)

Agsumption (56)2 is special, as the effects of the environment are independent of age:; it

might be appropriate, for example, to a population in the presence of predators which

indiscriminatly eat individuals of all ages.

1
We assume un'ue' and B are c! functions on [0,») with A& L (0,») and

[§ marptarda > 1 . (58)

wa

1
Ko~ were

These assumptions with i = 0 and R(a) a sum of terms of the form ba
utilized by Gurtin and MacCamy {5,8] to reduce the system {55) to ordinary differential

equations. The more general form (56) was introduced by Coleman and Simmes [4].
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The left side of (58) represents the net reproduction rate

1

in a perfect environment.

consequence of (58) is that in such an environment the population ultimately grows.

assumption therefore yields a population which is amenable to harvesting.

Because of (58), the equation

f: n(a)B(a)e-rada =1

has exactly one real solution r, and r > 0. We call

perfect environment the function

pla,t) = Cnla)e “2p(t)
with
P(t) = P(0)e" "

ani C chosen so that

¢ [y mare " aa = 1

r

the natural growth rate.

is a solution of (55) ({56) and (57)). We call such solutions persistent age

.

This

For a

(59)

(60)

distributions. Their importance is that they represent the asymptotic behavior of general

solutions for large time:2 given any solution p there is a constant Co

each a,

~ra rt
pla,t) ~ Cow(a)e e

1
cf., e.q., Keyfitz (9], p. 102.
2
Foller 107,
3
F(rY ~alt) 18 t » » sgignifies that £(t)/g(t) + 1

30~
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b. General solution. 1

Consider now the initial-value problem consisting of the system (55) supplemented by

the initial condition

o(a,0) = v(a) (61)

with initial data ¥ continuous and of compact support. To solve this problem we write

Ela,t) = ola,thexp{ [p u (BOMIAN} . (62)
Then, because of (56), equations (55), 3 and (61) are equivalent to
’

’

Bg(aa,t) L RERE) Ly a g
a at n
£(0,£) = [ B(a)E(a,t)da (63)

tla,0) = ¢(a) .

The equations (63) constitute a linear system for £, a system which is, in fact, the

classical formulavion of the problem for a perfect environment. The corresponding birth-

rate

B(t) = &(0,t)

is therefore a solution of the Sharpe-Lotka equation

B(t) = [T Ba)n(a)B(t-a)da + &(t) (64)

where ¢ depends only on the initial data:
-]
ott) = [ Bla)n(a-t,a)yla-t)da ,

n(a)
nl a)

n(a,a) =

1
Coleman and Simmes (41.
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Once B is known the total population
L -]
P(t) = J’o £la,t)da (65)

corresponding to £ 1is easily calculated using the relations

P(t) = [0 n(a)Blt-a)da + ¥(t)
(66)

¥(t) = f: n{a-t,a)y(a-t)da .

It is important to emphasize that £, B, and P are the age distribution, birth-rate, and

total population that would prevail in a perfect environment. |

To derive (64) and (66) from (63) we integrate (63), along characteristics (t = a +

constant). The result,

n(a)B(t-a), 0 ¢ac<t
Ela,t) = ’ (67)
n{a-t,alv(a-t) t <a

when combined with (63)2 and (65), yields (64) and (66).

Next, we integrate (62) with respect to age and use (55)2 and (65) to conclude that
P(t) = Bltiexp ([ w (POMIAN} . (68)

If we differentiate this relation with respect to t and divide the result by P(t), we

find that P satisfies the ordinary differential equation

B = (y- K (PP . (69)
Here
yit) = %%%% (70)

repregsents the instantaneous growth rate in a perfect environment. Of course, P

satisfies the initial condition
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P(0) = P = [v(a)da . (71)
The above analysis yields the following procedure for solving the initial-value
problem (55), (56), and (61):
(a) Solve the linear integral equation {(64) for B(t).
(b) Compute P(t) from (66) and y(t) from (70).
(c) Solve the differential equation (69) - with initial condition (71) - for P(t).

{d) Compute £(a,t) from (67) and pla,t) from (62).

4. Harvesting of age-structured populations.

a, Basic equations. The optimal harvesting problem.

We consider harvesting with effort E(t) independent of aqe.1 Thus individuals of

age a are harvested at a rate E(t)pla,t), per unit age and time, and, in place of

(55),, we have the balance equation

20i8.8) , 30MA8) 4 pp(a,ple)) + E(E)Ip(at) = 0 . (72)

The underlying equations are therefore (72) and (SS)2 3 supplemented by the initial
’
condition (61), (We continue to assume that y and R satisfy (56).)
We will use the procedure discussed in Section 3 to reformulate the problem. We
therefore define
t
Fla,t) = ola,t)exp{ [ lu (PO + B4R} . (73)

Then § satisfies the linear system (63), 8{t) = £(0,t) is again the solution of the
linear integral equation (64), and P(t), defined by (65), is again given by (66). It is

1
Cf. Remark 3,
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important to note that £, B, and P represent the age distribution, birth-rate, and

total population that would prevail in the absence of harvesting and environmental effects.

As before, the behavior of the actual population P(t) 1is governed by an ordinary

differential equation. Indeed, the exact same steps used to derive (69) now lead to

? = y(t,P) ~ EP (74)
with
y(t,P) = [y(t) - ue(P)]P . (75)
In view of (74), the yield
jz f: E(t)pla,t)dadt = f; E(t)P(t)dt (76)

on a time interval [0,T) 1is given by the functional
Yo (P) = B - B(TT) + [ y(e,B(E))aE . 1M

Roughly speaking, our optimal harvesting problem consists in maximizing (77) subjct to
certain constraints. This problem can be attacked using the following procedure:

{a) Solve the linear integral equation (64) for B (t).

(b)Y Compute F(t) from (66) and Yy{t) from (70).

(c) Solve the optimal control problem defined by the differential equation (74)

and the functional (76).

Unfortunately, because of the dependence of y(t,P) on t, the optimization problem i
nf (c) doex not fit within the framework discussed in Section 1. There is, however, an
important «<lass of problems for which this dependence disappears. This class corresponds
to initially persistent age distributions, and we shall study it in the next section.

be  ontimal harvestinqg for initially persistent age distributions.

As notrd at the end of Section 3a, when the environment is perfect and harvesting
ahennt , the 3ga Adistributinn £ is ultimately persistent. Therefore, if the pnpulation has

>

bean avolvina over a lona period of time, and if all past harvesting has been with effort
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independent of age, then it seems reasonable to assume1

that initially p will have the
age structure indicated in (59). We therefore assume that the population is initially
; persistent in the sense that
v(a) = CRoma)e” ",
where C and Po are constants with C chogen so that (60) holds, while r 1is the
natural growth rate. The initial-value problem (63) then has the unique solution
E(a,t) = Cnlare “2At) ,

(78)

rt
P(t) = Poe R

so that, by (70),
Y(t) = r . (79)
Further, the counterpart of (68) in the present circumstances is simply (68) with E())
added to ue(P(X))r thus (78), and (73) imply that
pla,t) = Cn(are "“p(t) . (80)

In view of (75) and (79), vy(t,P) is independent of t:

y(P) = [r = ue(P)]P . (81)
Thus the differential equation (74) reduces to
P =y(P) - EP , (82)

while the functiocnal (77) takes the form
Y (B) = B - B(TT) + {g y(P(t))ar . (83)

Comparing (82) and (83) with (3) and (4), we see that for an initially persistent

population the optimal harvesting problem reduces to the (age-independent) problem

discussed in Section 2. Therefore, if y satisfies the hypotheses of Section 2, the

theorems of Sections 2b and 2c hold.

‘ cf. (73).
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Remark 3, Our results extend trivially to situations in which individuals of age a
have an economic value g(a), where gq is a nonnegative, Ln function on [0,®). 1In
this case the yield (76) is replaced by

[3 7 staE(trota, trdade = [ B(0G(0ae (84)
where

L
G(t) = [ gla)pla,t)da ,
and (80) implies that
o -ra

Glt) = (c [, gla)ma)e” "da)p(t) = C,P(t)
with Cy > 0 constant. Thus (84) is a constant times the yield (76), and the corresponding
optimization problem reduces to that already discussed. Wwhen the age distribution is not

initially persistent this reduction does not take place; the resulting problem is treated

in (11].
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